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ABSTRACT
Let X be a Banach space with an unconditional finite-dimensional
Schauder decomposition (E,). We consider the general problem of charac-
terizing conditions under which one can construct an unconditional basis
for X by forming an unconditional basis for each E,. For example, we show
that if sup,, dim E, < oo and X has Gordon-Lewis local unconditional
structure then X has an unconditional basis of this type. We also give an
example of a non-Hilbertian space X with the property that whenever Y
is a closed subspace of X with a UFDD (E,) such that sup, dim E, <
oo then Y has an unconditional basis, showing that a recent result of

Komorowski and Tomczak-Jaegermann cannot be improved.

1. Introduction

Let X be a separable Banach space with an unconditional finite-dimensional
Schauder decomposition (UFDD) (FE,,). It is well-known that even if for some
constant K each E, has a K-unconditional basis it is still possible that X may
fail to have an unconditional basis. The first example of this phenomenon was
given in [10] where a twisted sum of two Hilbert spaces Zj is constructed in such
a way that it has a UFDD into a two-dimensional spaces (or a 2-UFDD) E,, but

Zy has no unconditional basis. Later, Johnson, Lindenstrauss and Schechtman
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[6] showed that this same example fails even to have local unconditional structure
(Lu.st.).

Recently, Komorowski and Tomczak-Jaegermann [13] proved the remarkable
result that if X has an unconditional basis and is not hereditarily Hilbertian then
it has a subspace Y with a 2-UFDD and failing local unconditional structure.
This is an important step in the resolution of the conjecture that a Banach space
all of whose subspaces have local unconditional structure must be Hilbertian.

Motivated by these results, we investigate here the construction of uncondi-
tional bases or unconditional basic sequences in spaces with a UFDD. For con-
venience let us refer to a UFDD (E,,) as uniform if sup,, dim E,, < co and as an
N-UFDD if dim E,, = N for all n.

Suppose X has an unconditional basis and the property that whenever (E,) is a
UFDD for X and, for each n, (fp; f;"l‘ En is a basis of E,, with unconditional basis
constant (ubc) bounded by some constant K, then (fy;)»,; forms an unconditional
basis of X. In Section 2 we prove that this property characterizes the spaces £, £,
and cg. A similar property for any UFDD of a closed subspace characterizes £5.

Now suppose X is a Banach space with a uniform UFDD (E,,). Under these

hypotheses we show that (Gordon-Lewis) Lu.st. is equivalent to the existence

of an unconditional basis for X of the form (f;)»; where each ( f,,,-)?;"l‘ En s
an unconditional basis for E,. This provides us with a simple criterion to check
whether a given space with a uniform UFDD has l.u.st.: compare the earlier
criteria used by Ketonen [11], Borzyszkowski [3] and Komorowski [12]. Using
this criterion we establish a general result on the failure of lu.st. in twisted
sums.

Finally in Section 4, we give an example to complement the work of
Komorowski and Tomczak-Jaegermann [13]. We show that there is an Orlicz se-
quence space £ # {5 with the property that whenever (E,,) is a uniform UFDD
fiy
of each E,, so that the family (f,.:)»: is an unconditional basis of Xy. Of course

for a closed subspace X, then one can choose an unconditional basis { f,;)

the space £ is hereditarily Hilbertian; this example shows that the result of [13]
is in a sense best possible.

2. Preliminary results

Let us say that a UFDD (FE,) is absolute if there is a constant C so that
if yn,zn € E, are finitely nonzero and satisfy ||yn| < |lzn| for all n then
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1> o ynll € CI 3002, zall- We remark that in [2] it is shown that every FDD of
a reflexive subspace of a space with a shrinking UFDD, for which every blocking
is absolute, can be blocked to be a UFDD. In [1] there is a more technical result
which extends this and also gives some conditions under which one can construct
an unconditional basis for the subspace. The following Proposition is trivial:

PRrROPOSITION 2.1: Suppose (E,) is an absolute UFDD of a Banach space X
and that (fn:)2m E» is an unconditional basis of E, so that sup, ubc (fn;) < 0.
Then (fni)n,: Is an unconditional basis of X.

PROPOSITION 2.2: Let (E,) be a UFDD of a Banach space X such that there

)dlm E )dlm E

is an unconditional basis (gn; “~ for each F, with sup,, ubc (gn: " < 00,
Suppose further that whenever we pick an unconditional basis ( fm)d”nn Ev of E, in
such a way that sup,, ubc (fn:)om En « o0, then (fpi)n,; forms an unconditional

basis of X. Then (E,) is an absolute UFDD.

Proof:  Suppose (E,,) is not an absolute UFDD. Then by a gliding hump argu-
ment we can find two normalized sequences (2,)2,, (yn )32, 50 that zn,yn € Fy,
and so that it is not true that for some constant C and any finitely nonzero
sequence of scalars (a,,)2., we have

I Z anyn|l < C| Z AT
n=1 n=1

Let F, = [Tn, yn] so that dim F;, < 2. Then there is a projection P,: E,, — F,
with || Py, || < V2; let G,, be the complementary space. Then if G, is nontrivial,
since it has codimension in E, of at most two, it is at least 9-isomorphic to
[gni]&™ S (see Zippin [20]). Hence if we select any unconditional basis (fni)Sim
of each F, with supubc (fn:)i™F» < o0 we can extend it to an unconditional
basis of E,. It then follows that (fn:).: is an unconditional basic sequence.

Since each F,, has dimension at most two, we can introduce a Euclidean norm
| llF, so that ||lz|] < |lz||r, < V2|jz|| for € F,. Let (, )g, be the associated
inner-product. We will show that if £,,7, € F, with ||&,]|/, = ||7.||F, = 1 then

there is a constant C so that for any finitely nonzero sequence (a,) we have

(1) 1Y anmall CID ananll
n=1 n=1

It plainly suffices to consider the case where (¢,,,7,)F, is real and non-negative.
Then ||£, + 7nl|F, = ba > V2. Let (n = b7 (&, + na). Then we can extend ((,)
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to an orthonormal basis of F,, and by the above remarks there is a constant C;
so that if (a, )32, is finitely nonzero then

15" nln, ) Gall S C1ll Y el
n=1

n=1

By a similar argument, there is a constant C; so that

” Zan €ns Cn Cmnn)F 77n“ < CZ” zanfn”

n=1

Now (£n,Cn)F.(Cny)F, > 3 and this establishes the desired inequality (1),
which clearly leads to a contradiction if we set &, = z./||lzsl|F, and 5, =

Yn/llymliF,- W

We shall say that an unconditional basis (e,)S%; for a Banach space X has
the shift property (SP) if whenever (z,) is a normalized block basic sequence

there is a constant C so that for any finitely nonzero sequence (a,) we have

(2) Y enzall < 1S antngall < OIS antall.
n=1 n=1 n=1

It is easy to see that if X has (SP) then there is a uniform constant C so that
(2) holds for all normalized block basic sequences. We also remark that, although
our formulation is mildly different, essentially the same concept was introduced
for sequence spaces in [9]. Precisely, the unconditional basis (e,) has (SP) if
and only if the corresponding sequence space has both the left-shift (L.SP) and
right-shift {RSP) properties. No example of a sequence space with just one shift
property, say (LSP), and not the other is known.

PROPOSITION 2.3: The following properties are equivalent:

(1) (ea)22, has property (SP).

(2) For every blocking E,, = [e;}2, _ ., of (es) and every unconditional basis
(fi)ier. 41 Of En such that sup, ubc (fi)i, _ 41 < oo the sequence
(fx)32, forms an unconditional basis of X.

(3) For every blocking E, of (e,) and every sequence (F;,) of 2-dimensional
spaces so that F,, C E,, and every unconditional basis (fan—1, fan) of Fy,

with sup,, ubc (fan—1, fon) < oo the sequence (f,)32, is an unconditional
basic sequence.
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Proof: Clearly (1) implies easily that every blocking (E,,) is an absolute UFDD,
and so implies (2) by Proposition 2.1. (2) also implies by Proposition 2.2 that
every blocking is absolute and so also implies (3) by Proposition 2.1.

Finally suppose we have (3). Suppose (z,) is a normalized block basic se-
quence. It follows from Proposition 2.2 and (3) that the UFDD F,, = 22,1, Z2n]
is absolute. Hence, for a suitable constant Cp, and for any finitely nonzero

sequence (a,) we have:

Q o o
Co'Il D azn12all <11 @20-1220-1]1 < Coll Y 02n_172nll-
n=1 n=1 n=1

In a similar fashion, considering G, = [T2,, Zan+1] We have a constant C; so that:

o Z aznZons1] < || E aonZon|| < Ch| Z ConTon41l|-

n=1
Combining this with the fact that (zr,) is an unconditional basic sequence shows
that (e,) has the shift property (SP). 1

THEOREM 2.4: Let X be a Banach space with an unconditional basis. Then the
following are equivalent:
(1) X is isomorphic to one of the spaces £1,¢3 or cg.
(2) Whenever (E,,) is a UFDD for X and (f,;)2™ £~ is an unconditional basis
for each E,, withsup,, ubc (fn;)3mE

basis for X.

® < 00 then (fni)n i iS an unconditional

Proof: (1) = (2). This is obtained by putting together some folklore results. It
follows easily from the parallelogram law that if (E,;) is a UFDD for {5 then there
is a constant C so that if (x,)32, is a finitely nonzero sequence with z,, € E,

then - - -
CHOQ zal2 < 1D zall < €O a2,
n=1 n=1 n=1

If (E,,) is a UFDD for ¢; one obtains the similar inequality

o o0 o0
CY llzall <D zall <C Y l2all
n=1 n=1 n=1

from the classical argument of Lindenstrauss-Pelczyniski [14] that the uncondi-
tional basis of £; is unique. In the case of ¢y one obtains
C™! max |lzaf < ilzxnll < C max ||z

1< < 1
n=
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In all cases the UFDD is absolute and Proposition 2.1 gives the conclusion.

(2) = (1). It follows from Proposition 2.3 that every permutation of every
unconditional basis has the shift property. Thus any unconditional basis (e,,) is
a symmetric basis with the (SP) and so by Proposition 2.3 of [9] X is isomorphic
to one of the spaces £, for 1 < p < oo or to cg. Since every unconditional basis
is symmetric this shows that X is isomorphic to one of the three spaces ¢1, {5 or
cp {cf. [18]). |

COROLLARY 2.5: Let X be a Banach space with an unconditional basis. Then
the following are equivalent:

(1) X is isomorphic to £;.

(2) Whenever (E,,) is a UFDD for a closed subspace Y of X and (fp;)om F»
is an unconditional basis for each E, with sup, ubc (fn:)2mE» < oo then
(fni)n,: is an unconditional basis for Y.

(3) Whenever (E,) is a 2-UFDD for a closed subspace Y of X and (fni)i=12
is an unconditional basis for each E,, with sup,, ubc (fni)i=1,2 < o0 then

(fni)n.: is an unconditional basis for Y.

Proof: Clearly (1) implies (2) and (2) implies (3). For (3) = (1) we use Proposi-
tion 2.3 to deduce that every unconditional basic sequence has the shift-property
and hence as in Theorem 2.4, X is isomorphic to £,, €5 or ¢g. Since this property

passes to every closed subspace we obtain X isomorphic to ;. |

Qur final result of the section is that if one can choose an unconditional basis
from a uniform UFDD then it is essentially unique.

PRrOPOSITION 2.6: Suppose X is a Banach space with a uniform UFDD (E,).
Suppose ( fm-)fiz"l' Ex and (gns)dm En are normalized unconditional bases for each
E,, so that the whole collections ( f,;), (gni) are unconditional bases of X. Then-

(fni) and (gn;) are permutatively equivalent.

. di  n
Proofr Let d, = dimE,. Let g,; = ijl as;
inf,, |det (af;)| > 0 and so for some ¢ > 0 and each n, there is a permutation
on of {1,2,... ,dp} so that |a; o ;)] > c.

Now by Krivine’s theorem, for any finitely nonzero {(a,;)

130 lomiPlal 1) 2 fasll < CIIY anignil
n,j n,:

i

fnj- It is easy to see that
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where C is a suitable constant. Therefore,

1Y anifronll < CHD_ atnignill-

s

Thus the basis (gn;) dominates the basis (f, 5, (:))- By the same argument,
there exist permutations 7, of {1,2,....d,} so that (f,;) dominates (gn ,())-
Thus f,; dominates f, (i), where 7, = 0,7,. Iterating N! times where N =
sup dy, since 7' is always the identity permutation, this implies that (f,;) and

(fn,r()) are actually equivalent and so (fn;) and (gne,(i)) are equivalent. ]

3. Spaces with local unconditional structure and a UFDD

Let Y be a space with an unconditional basis (e,). We shall say that a sequence
of finite-dimensional subspaces (E,) forms a complemented block UFDD if
there is an increasing sequence of integers (p,)3%, with pp = 0 so that E,, C
F, = [e]fz,. .41 and a projection P on Y so that P(F,) = E,. If further
supdim F;, < oo then (E,) is a uniform complemented block UFDD.

LEMMA 3.1: If(E,) is a uniform complemented block UFDD then one can choose
dim E.
j:l

basis for the closed linear span X =Y .-, E,. Furthermore (fn;) is equivalent

an unconditional basis (f;) in each E, so that (fn;)n ; is an unconditional

in a suitable order to a subsequence of (e,).

Proof: We shall prove the first statement by induction on M = sup,, dim E,.; it
is clearly true if M = 1. Assume the statement true whenever sup, dim E,, < M
and suppose sup,, dim E,, = M. We first show that it is possible to pick normalized
vectors f,; € E, so that there is a projection Q: X — [f.1] with Q(E,.) C E,,,
for each n. To see this note that for each n we have

Pn

> (Pen,el) =dimE,

k=p,_1+1

and so there exists p,—; < kn < pn 5o that a, = (Pex,,e; ) > N~! where
N = sup(pp — pn-1). Let fn1 = Pek, and consider the projection Q: ¥ — Y
defined by Qy =Y o>, o, y, ex. ) fn1. It is readily verified that Q is bounded.
Let G, = E, N Q~{0}. Then, after deleting trivial spaces, (G,,) is a uniform
complemented block UFDD with sup, dimG,, < M — 1. We therefore can pick
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an unconditional basis ( fn])d‘"‘E in each so that (f,;)n,; is an unconditional
basis of X.
To complete the proof let H, = P~1{0} N F,,. Then (H,,) is also a uniform

)dlm E

complemented block UFDD. It is therefore possible to extend (fn; * to an

unconditional basis (fn; )‘;’:";F of (F,) in such a way that (f,;). ; is an uncon-

ditional basis of Y. The final statement follows from Proposition 2.6. |

LEMMA 3.2: Let X be a finite-dimensional Banach space. Suppose X =
Ei® Ey® - -- E, with associated projections Q;: X — E; satisfying

sup || z a;Q;ll =

fer;1<1

Suppose Y is a finite-dimensional Banach lattice and that A: X — Y and B: Y —
X are operators so that BA = Ix. Then there is a finite-dimensional Banach
lattice Z with a band decomposition Z = Z1 ® Z2 ® --+ & Z, and operators
Ag: X — Z, Bo: Z — X with BoAp = Ix, Ao(E;) C Z;, Bo(Z;) € E; and
1 4ollll Boll < 2K2|| All?(|B|2.

Proof: Consider Z = Y™ with the lattice seminorm

(w1, ya)llz = S Z ly;l, 1B*Q;A™y"]).

j=1
(Strictly speaking Z should be replaced by its Hausdorff quotient.) We define
Ag: X = Z by Aoz = (AQhz, ... ,AQ.x) and By: Z — X by Bo(y1,-.- ,¥n) =
E?:x Q;By;. Clearly By, Ao satisfy all the required properties except possibly
the norm estimates.

If r € X and y* € Y* with ||y*|| <1 then

S (14l 1B QA D < ¢ (ZIAQ,xl )2 (ZlB‘ AT H)YR).
j=1
Now, by Khintchine’s inequality,
II(E |AQ z|*) /2| < 2'/2 Ave lIZGaAQJxII < 22K | A=)
ij=1 j=1

Similarly,

I3 1B Q5 A"y ) /2| < 2/ K || All| B

i=1
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It follows that ||Ao|| < 2K?2|A||%||B||-
On the other hand if z* € X* with |{[z*|| < 1 and if (y1,¥9,---,¥n) =2 € Z
then

e

[(Boz,z*)| < ) [y;, B*Qjz")]

Jj=1

<Y (ly;,1B*Q;A4° B z*))
j=1

< |IBlli=l-

Hence [|Aollll Boll < 2K*||A}*|IB]%.  ®

We now recall that a Banach space X has Gordon-Lewis local unconditional
structure (or l.u.st.) [5] if there is a constant C so that whenever E is a finite-
dimensional subspace of X there is a finite-dimensional Banach lattice Y and
operators A: E — Y, B: Y — X with ||A||]|B|| £ C and BA = Ig. (A stronger
form of local unconditional structure is considered in [4].)

The following Proposition is established by Johnson, Lindenstrauss and
Schechtman [6], under the additional assumptions that X has nontrivial cotype
and is complemented in its bidual.

PROPOSITION 3.3: Let X be a Banach space with a UFDD (E,). Suppose
X has local unconditional structure. Then there a Banach space Y with an

unconditional basis (e,) so that Y contains X and (E,) is a complemented block
UFDD.

Proof: We let @, be the natural projection of X onto E, and set K =
sup,, [|@nl|- Let X,, = 3°%_; E;. Using L.u.st. and the preceding Lemma, there is
a constant C so that for each n we can find a finite-dimensional Banach lattice Z,,
with a band decomposition Z, = Z,; ® --- & Z,,, and operators A,: X,, — Z,,
B.: Zn — X, so that BoA, = Ix, [|Asll < 1, |Ball < C and An(E;) C Zy;,
Bn(Z.;) CEjfor1<j<nm.

Choose €, > 0 to be a sequence such that } e, < (2C)~!. Then by an
argument of Johnson [17] we can find for each n and each 1 < j < n a sublattice
Ya; of Zn; with dimY,,; < d; (independent of ) and a map L,;: Ap(E;) — Yy,
so that ||Ln;z — z|| < €|zl

Now let Y, = Y1 ® --- ® Y,,, and define A,: X, — Y by /ina: =
Y 7e1 LnjAnQjz. Then [|A, — An|l < K Y7 €, so that [|A,]| < K. Further
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1B2An — Ix,|| < 1. Since A.(E;) C Y,; and B.(Ya;) C E; the operator
D, = (B,A,)™! leaves each E; invariant. Let B, = D, B,; then lanll < 2C.

The conclusion from these calculations, after relabelling, is that there is a
constant C' so that for each n there is a Banach lattice Z,, with a band decom-
position Z,; @ - -+ @ Zp, such that dim Z,,; < d; and operators A,: X, — Z,,
Brn: Zn — X, so that B,A, = Ix,, ||As]| £ 1, ||Ba]l £ €' and An(E;) C Z,;,
Bn(Znj) CEjfor1<j<n.

Let p, = Z;;l d;. We can alternatively regard Z, as the space of sequences

(&;) so that & = 0 for j > pn, with an associated norm. We can further

Pn

suppose that the canonical basis vectors (e;) ;=1 are normalized and that Z,; =

[eklzj:z)j—x +1°

Let U be a nonprincipal ultrafilter on the natural numbers N. Define a norm
|l 1|z on the space cgo of all finitely nonzero sequences by ||€|lz = limy, ||€]|z, . Let
Z be the completion of cyg for this norm.

Let Xg be the linear span of all (E,) in X. We can define an operator A: Xy —
coo by Az = limy A,z and similarly B: cpg — X by Bx = limy B,r£. It is clear
that |4l <1 and ||B|| < C'. It is easy to verify that A isomorphically embeds
X into Z in such a way that A(E,) is a complemented block UFDD. |

Remark: In [6] it is further claimed in Remark 2 that (under their additional
hypotheses) if (E,) is a uniform UFDD then we can choose Y so that (E,) is a
uniform complemented block UFDD. This of course would imply by Lemma 3.1
that one could find an unconditional basis for X by picking a basis of each E,,.
However, no proof of Remark 2 is given and the natural proof does not appear
to work. We shall see, however, that the claim of Remark 2 in [6] is nonetheless
correct, but the proof is rather circuitous.

Let us now fix H as a complex N-dimensional Hilbert space, where N > 2. If
A € L(H) we denote its trace by tr A and its spectral radius by r(A). We say that
a subalgebra A of L(H) is triangular if every A € A is of the form A=Al + S
where S is nilpotent. This is equivalent to requiring that r(A— % (tr 4)I) = 0 for
all A € A. The following elementary lemma is very well-known and we include

its proof only for reference.

LeEMMA 3.4: If A is a triangular subalgebra of L(H) then there is an ortho-
normal basis (ej);\’:] so that every A € A with tr A = 0 is upper triangular, i.e.
(ej, Aex) = 0 whenever j < k.



Vol. 95. 1996 UNCONDITIONAL BASES 359

Proof: The subset Ag = {A€ A:tr A=0} = {A € A: det A =0} is an ideal
of A. It suffices to construct an increasing sequence of subspaces (Ei)o<k<n With
dim E;, = k so that Ag(Ex) C Ag—y for 1 < k < N. Then we can construct an
orthonormal basis (ex)l_, with ex € En_g41 for 1 < k < N. Suppose then
Eo = {0} to start the induction. Now suppose 1 < k£ < N and E;_, has been
constructed. Choose z ¢ Ei_1 to minimize the dimension of (Aox+ Er—_1)/Ex_;.
If this dimension is zero then Apx C Ex—; and we let £y = [z, Ex_1]. Otherwise
there exists S € Ag so that Sz ¢ Fi_. But then A4p5z + Ey_; contains Sz by
minimality. Hence there exists T' € Ay with Sx —~ TSz € Ey_,. However (I - T)
is invertible in A and Ej_; is A-invariant so that St € FE,_; and we have a
contradiction. |

Now suppose that C is a compact subset of L{H) which contains the identity
I =1Iy. Let ||C|| = sup{||A|l: A € C} > 1. We define for m € N the set C{™) to
be the set of all operators T € L(H) of the form

m m m
= : : Z : : : a]ly vjm "Ajm
j1=1j2=1 m=1

where Ay, Az,...,A, € C and |aj,,. ;.| < 2™. Since I € C the sets ¢ are
increasing compact sets and | J,, C™ is the algebra generated by C. If T € C(™)
then ||T} < (2m||C||)™

.....

LEMMA 3.5: Suppose 6 > 0, M > 1,m,N € N with N > 2. Then there exists
p € N so that p = p(M, N,m,6) has the following property: suppose C satisfies
the above conditions with ||C|| < M. Suppose S € C™ and r(S — % (tr S)I) =
8 > 0. Then there exists a projection P with 0 < rank P < N and P € C(®.

Proof:  Let (/\j)f;l be the (complex) cigenvalues of S repeated according to
algebraic multiplicity. We have max; i |A; — Ax| > 8. It follows that we can
reorder them so that for some s with 1 < s < N —1 we have |A; — \¢| > §/2N
whenever 1 < j < sand s+1 <k < N. Let T = H;.czl(S — A;I). For each
J we have |A;| < (2mM)™ and on multiplying out one has T € C(@) where
q depends only on m, N and M. Let py = [[;_;(Ax — ;) so that pe = 0 if
1<k <sand 2Y@mM)™ > |ue| > (6/(2N))N if s+1 <k < N. Next let
W =1 sp1(T —ped). Let vy = Hk*&+l . It is easily seen that P = y~'W
is a projection and that 0 < rank P < N. From the obvious upper bound on



360 P. G. CASAZZA AND N. J. KALTON Isr. J. Math.

41, we obtain immediately that P € C?) where p depends only on m, N, M, é.
| ]

The next estimate is crude and can doubtless be improved.

LEMMA 3.6: Suppose H is a complex N-dimensional Hilbert space and that A
is a triangular subalgebra of L(H). Let (Ax) be a sequence in L(H) with each
Ay nonp-invertible such that Zle Ay converges unconditionally to I = I'y. Let

sup || ZakA&N =

lak|<1 k=1

Then

sup d(}:akAk,.A)>2‘3N (NN pm1-N?,

lakl<1 35
Proof: Let b = sup,, <) d(3-5, ar Ak, A). First observe that since A is
triangular we can choose an orthonormal basis (eJ) ., So that, when represented
as matrices, each B € A is of the foorm B = AI + S where S has an upper
triangular matrix, i.e. S = (s;;) where s;; =0if i < j.

Next, note that there exists B € A so that ||/ - B|| < b. If B = Al + S then
tr B= NAX and so |[A— 1| < b. Then ||I — S| < (b + 1), where 7 = |A|. Clearly
ISIl < 1+ b+ 7 < 4M. Now expand (S + (I — S))V; since S¥ = 0 we obtain
1<2Nb+ 1) AM)N-1 = 23N-2(p 4 T)MN-1

We now estimate 7. Let A,, = {a ~1- Then

Lier 4 |<_1_§N:|af.'.|
N ni = N 11

i=1

< (H Ia' |)1/N + ma‘xlau - a]]'
i=1

< (H laZ)Y + " la% -

i>jF

Notice that for fixed 4,j we have ", |af; — a7;] < 2b. Hence on summing we
have

T<Z\Hanw~ +N%,

n=1 i=1
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Now since det A,, = 0 we have that
N N
IT1ez < > [T ek
=1 o€ll’ i=1

where II' is the collection of all permutations other than the identity of
{1,2,...,N}. Hence

N oo N
(it < 5 3 [l

g€l n=1 i=1

||M8

Let us fix o € II'. Then

oo N N o
Z(H la?,o(i)l)l/N < H Z a; 0(1)| I/N'
i=1 n=1

n=1 i=1

Now if ¢ < o(i) then
oo}
Y lafai<b
n=1

so that since o is not the identity, we obtain an upper estimate

oo N
Z(H ,a?,a(i)l)l/N < Ml—l/Nbl/N.

n=1 =1
Summing over all such permutations and combined with our previous estimates

we finally obtain:
T < N2b + (NYMI-UNpUN,

It follows that
b+ 1 < 4(N)YMI-YNpUN

and the lemma follows. [ ]

LEMMA 3.7: Suppose 2 < N € N and M > 1. Then there is an integer p =
p(N, M) with the following property: suppose H is a complex N-dimensional
Hilbert space and let (Ax) be a sequence in L(H) with each Ay non-invertible
such that 3¢ | Ax converges unconditionally to I = Iy. Let C be the collection
of all operators of the form 3 _p., axAy where |ax| < 1 and suppose ||C|| < M.
Then there is a projection P with 0 < rank P < N and P € C®,

Proof: We argue by contradiction. Suppose for some M, N the result is false.
Then we can find a sequence of such expansions I = ZZ":l A,k so that the
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associated compact sets C,, = {3 o, axAnk: ax| < 1} satisfy [|Cu|| < M and
that there is no nontrivial projection in C,(ln). By passing to a subsequence we can
further suppose that C,, converges in the Hausdorff metric to a compact set C. It
then follows from Lemma 3.5 that for each p we must have

S
lim sup 7 (S— Er—I) =0.
T gecty) N

Since all these quantities are continuous it follows that if S € C(P) for any p, we

have )
T (S-‘- N(tr S)I) =0

and so the algebra A generated by C is triangular. But the preceding Lemma, 3.6

now implies that

inf sup d(A,A) >0
n A€C.

which contradicts the fact that C, converges in the Hausdorff metric to C C A.
1

THEOREM 3.8: Let X be a real or complex Banach space with local uncondi-

tional structure. Suppose that X has a uniform UFDD (E,,). Then there is an

dim E,,

5o1 " of each E, so that (fnj)n,j is an unconditional

unconditional basis (fn;)
basis for X.

Proof: We first prove the complex case. We shall prove the formally weaker
statement that if X has Lu.st. and an N-UFDD (E,) then there is a bounded
projection @ on X so that Q(E,) C E, for each n and 0 < dimQ(E,) <
N for each N. Once this is proved the result follows simply by induction on
sup,, dim F,,.

We first note that it is possible by Proposition 3.3 to regard (E,) as a
complemented block UFDD in a Banach space Y with unconditional basis (e, ).
We suppose that E,, C [ex]i, _ ,; Whererg <7y <---.Let P1Y — X be the
associated projection. Let H be an N-dimensional Hilbert space and suppose for
each n, V,,;: H — E, is an isomorphism satisfying ||V, |/||V.i"Y|| < V'N.

Letting (e} ) be the biorthogonal functions for the basis, we define for r,_; +1 <
k <rp, Ani: H— H by A =V, 1 P(e} ® ex)Vin. Let

r’l

Ch = Z o Ank: Iakl <1

k=rp,_1+1
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Then note that sup,, {|C,|| < 0o and so there is an integer p such that each clp)
contains a projection R,, with 0 < rank R, < N.

Next observe that if (B, )nen Is any sequence in L(H) with B,, € C, then the
operator B defined on X by Bx =V, BnVn‘lx for z € E,, is bounded. It follows
easily that the same statement is true if B,, € C,(lq) for fixed ¢. Hence the operator
Q: X — X defined by Qz = V,R, V! for z € E,, is bounded and the proof is
complete in the complex case.

We now turn to the real case. Let @,: X — E, be the natural projections.
We complexify X to a space X, by norming (z + iy) for z,y € X by

<
lz+diylle= sup () (Quxcosbi + Qrysinbi)|.
00, <2r 7

Now the subspaces E, = E, + iE,, form a UFDD for X and so we can pick an
unconditional basis (¢nj)?f__"{ B~ in each E, so that (énj)n,; is an unconditional
basis of X. Next let Y be the underlying real space for X = X & X. Then Y
has an unconditional basis (¢nj,in;)n,;- Now the original (E,) is a uniform
complemented block UFDD in Y with this basis and so we complete the proof

by applying Lemma 3.1. |

Let us give a sample application of this result. Let w be the space of all
sequences. Suppose X is a super-reflexive (Kothe) sequence space (so that the
canonical basis vectors (e, ) form a 1-unconditional basis of X) and let Q: X — w
be a (homogeneous) centralizer, i.e. a map satisfying, for a suitable constant A:

(1) Q(az) = af2(x) for a € R and = € X.

(2) |Iuz) — u(z)]|x < Al|ufloo]lz||x for z € X and u € £u.

See [7] and [8] for discussion and examples. The simplest examples are those
discussed in [10] of maps

Uz)(n) = z(n)f (log_lx(n_)|)

flllx

where f: R — R is a Lipschitz function (here we interpret the right-hand side as
0 if z(n) = 0). In the case f(t) =t and X = {3 one recovers the space Z, studied
in (10] and [6).
We can now form the twisted sum ¥ = X &g X of all pairs (z,y) in w X w
such that
(I(z, y)lla = llzlix + lly — =)lx < oo.
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This is a quasinorm, but is equivalent to a norm, since the space X is super-
reflexive (as in [10]). The space Y is then a reflexive Banach space with a 2-
UFDD (E,) where E,, is the span of (e,,0) and (0, e,,). The vectors (0, e,) span
a closed subspace X of Y isomorphic to X and the quotient space Y/ Xy is also
isomorphic to X. It may be shown that X is complemented in Y, so that Y
splits as a direct sum X & X, if and only if there is a linear centralizer L: X — w
(i.e. Lz = bz for some b € w) so that ||Lz — Qz|jx < Cljz||x for all z € X.
Such twisted sums arise very naturally as derivatives of complex interpolation
scales of sequence spaces. If Zy, Z; are two super-reflexive sequence spaces and
Zg = [Zo,Z1]p for 0 < @ < 1 is the usual interpolation space by the Calderén
method, one can define a derivative d Xy which is a twisted sum Xg g Xy which
splits if and only if Z, = wZ, for some weight sequence w = (w(n)) where
w(n) > 0 for all n. These remarks follow easily from the methods of [7].

Our main conclusion here is that twisted sums of this type have lLu.st. if and

only if they split as a direct sum. This extends the special case of Z; given in [6].

THEOREM 3.9: Suppose X is a super-reflexive sequence space and §3: X — w is
a centralizer on X. Let Y = X &q X. Then the following are equivalent:

(1) Y is isomorphic to X & X.

(2) Y has local unconditional structure.

(3) Y has an unconditional basis.

(4) The subspace X is complemented in Y.

(5) There exists b € w and C > 0 so that ||Q(z)—bx||x < C|lz||x forallz € X.

Proof: 'We have already observed the equivalence of (4) and (5). Clearly (4) =
(1) = (3) = (2). It remains only to show that (2) = (4).

Let us first remark that we can assume that the canonical basis (e,) of X is
normalized; we can also assume that X is p-convex and ¢-concave with constant
one, for suitable p > 1 and % + % = 1. We note that Y is super-reflexive and has
a 2-UFDD (E,) with the property that for suitable z, € E, the unconditional
basic sequence (z,) is equivalent to the canonic¢al basis of the sequence space X
and the induced unconditional basis (y,) of the quotient Y/[z,] is also equivalent
to the canonical basis of X.

If Y has Lust. then by Theorem 3.8 we can pick a normalized basis of E,,,
3y (fn,gn), 5O that {fn, gn)3%, is an unconditional basis of Y. We may suppose
that £, = anfn + bngn Where |a,| > b, > 0. If we consider the dual basis (£, g)
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then the sequence z, = b, f; — a9, must be equivalent to the canonical basis of
the dual sequence space X*.

It will now be convenient to switch to sequence space language. Let W be a
sequence space so that if £ € W then ||¢||w is equivalent to || Y5, £(k) k||, and
similarly let Z be a sequence space so that [|£[|z is equivalent to || 327, £(k)gxll-
Since Y is super-reflexive we can assume that both W and Z are p-convex and
g-concave with constant one (possibly changing the original choice of p,q), and
that the canonical bases are normalized in both W and Z.

It is now easy to see that for a suitable constant C we have the inequalities

Zlelx < max(lilw, 10¢]2) < ClielLx

and

1
o 1€ lIx- < max(|[bg™[lw+, 1€7]|2-) < C€”]

whenever £, £* € coo- Note also that b € £,,. We will show that these inequalities

X~

imply that W and Z both coincide up to equivalence of norm with X and hence

that the basic sequences (f,)}, (gn} and (.} are all equivalent. This suffices to

show that [z,] is indeed complemented in Y, i.e. X¢ is complemented in Y.
Before proceeding we will need a lemma:

LEMMA 3.10: Suppose V is a p-convex sequence space with 1 < p < oo, and
that 0 < £,£* € coo with (£,£*) = ||€|lv = I€*|lv- = 1. Suppose further that
0 <7 € coo with (n,6*) > 1 and |lnlly = M. Then, if  + 1 =1, (min(¢,7), ") >
1 —

g "M~

Proof of Lemma: Note that if ¢t > 0,
(max(€,1n),€*) < (1+ MPP)/P
and so
(min(€, 1), €Y > 1+t — (1 + MPP)V/P,
Now let t = M ~7 < 1; the lemma follows by elementary estimates. |

Proof of the Theorem: (2) implies (4): We observe first that if £ € cgg then
lellw < Cliellx < Cliéllz-

Suppose first that M is chosen so large that 2¢C%9*2+ M (1— )19 < M. Let
B > 0 be chosen so that 8 < min{C~2, (M +1)71). We split N as M’ UM where
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M = {n: b, <} and M’ = {n: b, > B}. First suppose £ € cgq is supported on
M'. Then
max(|[€|lw, [I€]lz) < CB7 €]l x

and if £* € coo(M'), then
max([|€*|lw-, [€*]lz-) < CB7HI€"{Ix--

These inequalities show that on cpp(M’) the spaces X, W, Z coincide.

Now let &, be the supremum of |[£]|z subject to £ € coo(M), [|€liw =1 and €
has support of cardinality at most n. Then x; = 1 and k,4; < &k, + 1. We will
show by induction that x,, < M for all n.

Suppose k,-1 < M and k, > M. Then there exists £ > 0 with support of
exactly n so that £ € coo(M), {€llw =1 and ||€]|z > M. Now ||¢|lz < M + 1 so
that ||b€]|z < B(M + 1) < 1. Hence we must have ||£]|x < C. Pick 0 < £* with
the same support so that (£,£*) =1 and ||£*||w- = 1. Then ||€*]|x- > C~!, but
|6€*||w+ < B < C72, so that [|£*]|z- > C~2. It follows that we can pick 0 < g
again with the same support, so that ||7]|z < C? and {(n,£*) = 1. We then have

[Imlw < C*, and we can apply the lemma to see that
(min(¢,7),£%) > ¢g~'C™%.

Now let ((n) = £(n) whenever £(n) < 2¢C%n(n) and {(n) = 0 otherwise. It
follows easily that (¢,€") > 3 (so that [[Cllw > 3) and [[Cllz < 2¢C*|nl|x <

2qc4q+2.
Now
Wz < ¢z + sn—1ll€ = Clw

< 2¢C**? 4+ M(1 - ||¢1§) M

< 2¢C**2 4+ M(1 - 2%)1/9

<M.
This contradiction yields the result that «,, < M for all n and hence the theorem.
[ |

Remark: The most natural case of Theorem 3.9 is when X = ¢, so that Y is
a “twisted Hilbert space”, i.e. Y has a Hilbertian subspace X so that Y/ X} is
Hilbertian. The result suggests the conjecture that every twisted Hilbert space
with an unconditional basis is a Hilbert space.
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4. An example

In this final section we construct an explicit example of a non-Hilbertian Orlicz
sequence space where every closed subspace with a uniform UFDD has local
unconditional structure. In [13] Komorowski and Tomczak-Jaegermann show
that if a Banach space with an unconditional basis is not hereditarily Hilbertian
then it has a closed subspace failing l.u.st. but with a uniform UFDD.

We define a function G on [0, 00) by G(0) = 0 and:

z(1- 3logz), 0<z<1,
vz, z>1.

Note that G is differentiable on (0, c0) and

G(z) = {

i

PR z> 1.

LEMMA 4.1: For any 1 < p < oo, whenever (a, )32, is a sequence with 0 < a,, <
1 and (30>, aB)}/P < 1 then for any sequence (t,) with t, > 0 we have:

() = { %(1 —logz), 0<z<1,

o0

Y Glantn) GO antz) +p Y taGlan).
n=1

n=1 n=1
Proof: It clearly suffices to prove the inequality for a finite sequence (a1, ... ,ay)
of strictly positive numbers.

Suppose A > p. Consider the function

N N N
B(tr, - v tn) = Y Glantn) = G(D_ antn) =AY t.G(an),
n=1 n=1 n=1

defined on the positive cone {t: t; > 0, 1 < ¢ < N}. Note first that if a,t, > 1
then G(ant,) = a,ll/ 2 ,11/ 2 < aptn < t,G(a,). It follows quickly that & is bounded
above by its maximum on the set {t: a;t; <1, 1 <i < N}.

Let ® attain its maximum at the point s where 0 < s; < ai_l for1 <i< N.

Let S = Z;il a;s;. For any index j such that s; > 0 we have
a;G'(a;s;) — a;G'(S) — AG(a;) = 0.
Since ajs; < 1 this simplifies to

1
5(1 ~logajs;) — G'(S)=A(1 - %logaj)
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and hence to
loga;s; +2G'(S) =1—2A + Aloga;.
Assume that the set J of indices such that s; > 0 is nonempty. Then taking
exponentials and summing
ezcl(s)s . Za;\
jeJ
Now if $ > 1 then e2¢'(5}§ > S If § < 1 then €26'(5)S = e. In either case we
deduce that
Za;‘ > A1 > 1,
jed
and this contradicts the conditions on (ay,...,a,). Now since J is empty the
maximum is attained at the origin and is 0. Since A > p is arbitrary the lemma
is proved. |
Now let F be the Orlicz function defined by F(0) = 0 and
(1 -logz), 0<z<1,
Flz) = { (1 —logz) <
x, x> 1.

The function F is convex for x < e~1/2

so that F' is equivalent at 0 to a convex
function. We will consider the Orlicz sequence space {r. The norm defined in
the usual way

lllF = inf{t > 0: > F(z(n)/t) <1}

n=1
is, strictly speaking, only a quasi-norm but is equivalent to a norm. Note that
£ is reflexive and has cotype 2 and type p for any p < 2; these facts are easily
computed from the function F. Clearly ¢ C ¢2 and ||z||2 < ||z||F for all z € £p.
We will also consider the modular A defined on £ by

Az) =) F(lz(n)).

n=1
It will be convenient to introduce for 0 < a < 1 the Orlicz functions F, where
F,(0) =0 and

x, z>1.
If (a,) is any sequence with 0 < a,, < 1 we will consider the Orlicz modular

Fu(z) = { z%(1-alogz), 0<z <1,

space (or Orlicz-Musielak space) £(F,,) of all sequences z(n) so that
S 1 Fa,(Jz(n)]) < oo again with the (quasi-)norm defined in the usual way.
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LEMMA 4.2: If M > 1 there is a constant K = K{(M) with the following
property.  Whenever (z;)nem and (Yn)nem are two (finite or infinite)
M -unconditional basic sequences satisfying the conditions:

(L2l e
neM ”yn“F “:L‘an

el Lol ¢

liynllz " lznll2
then (zn)nem and (yn)nem are K-equivalent.

sup max (
nem

Proof: We first note that it will suffice to consider normalized bases. Suppose
that (z.) is a normalized block basic sequence. Let a, = |[z,||3. Then for any

finitely nonzero (¢, )neam with max|t,| < 1, we have:

A(Ztnl'n) = Z ZF(ltn“In(])D

neJ neM j=1
= Y Y (talPF(Iza(d)]) = |2a(3)Pltn [ Log [ta])
nemM j=1
= Z |ta]*(1 — an log |tn)).
neM

It follows easily that (x,) is 1-equivalent to the unit vector basis in the Orlicz
modular space £(F,_ ).

Now it is clear that if a < b < Ma then Fy(z) < Fy(x) < MF,(z) and from
this it follows easily, using the uniform Aj-conditions on F; for 0 < ¢t < 1, that
there is constant K = K (M) so that if a,, < b, < Ma, for n € M then the unit
vector bases of £(F,, ) and €(F} ) are K-equivalent.

Now we turn to the general case. First note that fg is super-
reflexive and so if X is any closed subspace and 2 < p < oo is fixed then X* is of
cotype p with some cotype constant D independent of X. Now suppose (2, ),em
is a normalized M-unconditional basic sequence in £ whose closed linear span is
a subspace X. Consider the co-ordinate functional e; as an element of X*. Then

D leal)P = D lef(wa)lP < DPMP.
neM neM

Suppose (t,)nea is finitely nonzero, and max |t,| < 1. Since £ has cotype 2,
there is (cf. [16] Theorem 1.d.6) a universal constant C so that

1
a2 aPlzal) 2l < I Y tazalle < CMICY tallenl®Y?p.

nemM nemM neM
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Let us calculate the modular A(f) where f = (3", ¢ oq [tnl?|zn|?)!/2. Then

[o o}

=3 6(Y tallza ()

i=1 nem
Since G is concave, it is subadditive and so:
AN <€D Gtallza(G)P) = ) Fa,(Ital)-
j=1neM neEM
For the reverse inequality consider
AMTDTI) =3 G(Y ) [talPwn(5))
j=1 nemM
where w,(j) = M~2D 72|z, (j)|?. Then (¥, ¢ pq wn(5)"?)*P < 1. Thus we can
apply Lemma 4.1 to deduce that for each j,
> GlitalPwn(3) G ttalPwn(@) + £ - Gluwnli)ital
nemM neM nGM
Summing over j, and using the fact that M D > 1, we obtain
3 Fa (MDYt ) S AN + 2 3 ftal.
2
neM neM

The fact that £r has cotype 2 implies an estimate

(Y a2 < CM) Y tazallr

neM neM

It follows easily that (x, )ne s is K-equivalent to the unit vector basis of £(F;, )
where K depends only on M. This and the preceding remarks complete the proof.
|

The following theorem follows immediately:

THEOREM 4.3: Every unconditional basic sequence in £f is equivalent to a se-
quence of constant coefficient blocks in £r and hence spans a subspace isomorphic

to a complemented subspace of {r.

Let us note that this implies a strong universality principle for unconditional
basic sequences in £p. Precisely, £ has an unconditional basis (obtained by
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repeating every length constant coefficient block infinitely often) so that every
normalized unconditional basic sequence is equivalent to a subsequence of the
basis. Such a property is also enjoyed by Pelczynski’s universal space ([15],
Theorem 2.d.10 or [19]). We next observe that £r obeys a strong form of the
Schroeder-Bernstein property for spaces with unconditional bases.

THEOREM 4.4: Let X be a Banach space with an unconditional basis, and
suppose that X embeds into £p and £r embeds into X. Then X is isomorphic
tofp.

Proof: By the preceding theorem X is isomorphic to a complemented subspace of
g spanned by constant coeflicient blocks (u,)3%;. We now observe that (u,)22,
must contain an infinite number of blocks of the same length, for otherwise X
is isomorphic to an Orlicz modular space {r, where lim, .o @, = 0 and this
can easily be seen not to contain a copy of £r. Hence ¢ is complemented in X.
By Proposition 3.a.5 of [15], £ is isomorphic to ¢ & X and this is now trivially

isomorphic to X. |

In {13] it is shown that any non-hereditarily Hilbertian space with an uncondi-
tional basis contains a closed subspace with a 2-UFDD which fails to have local
unconditional structure. The following theorem (our main result of the section)

shows that this result cannot be substantially improved.

THEOREM 4.5: Let X be a closed subspace of {r with a UFDD (Ex)72, such
that the spaces (Ey) are uniformly Hilbertian (i.e. sup d(Ek,fév") < 0o, where
Ny, = dim Ey.) Then one can choose an unconditional basis ( fik)fvz"l of Ex so that

the collection (fix )ik is an unconditional basis of X.
Remark: In particular the theorem applies to any uniform-UFDD.

Proof: Let || ||g, be a Euclidean norm on Ej so that |zllg < ||zllg, < Cllzllr
where C = sup d(Ek,ff_,V ¥). Let M be the constant of unconditionality for the
Schauder decomposition (E). We choose a basis (fix) for Ej which is orthonor-
mal for both || [|g, and |||l2. Suppose (;x) is finitely non zero and that (e;)
is a choice of signs. Let zj = vaz"l tixfix and y = Z,N;I €:kti fix. Then for
the set M of all k such that they are nonzero we have ||z,||r/||lyxllF < C and
lyllp/llzxllr < C. We also have ||zllz = llyxll2. Both (zk)kem and (yi)rem
are M-unconditional basic sequences. Hence they are K-equivalent by Lemma



372 P. G. CASAZZA AND N. J. KALTON Isr. J. Math.

4.2 where K = K(C, M). In particular,

1) wllr <KUY zelle

keM k€M
whence the basis (fix) is K-unconditional. |

Remark: The properties of unconditional basic sequences in g have other
applications, for example to uniqueness questions. We plan to discuss these
applications in a separate paper.
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