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ABSTRACT 

Let X he a Banach space with an unconditional finite-dimensional 

Schauder decomposition (En). We consider the general problem of charac- 

terizing conditions under which one can construct  an unconditional basis 

for X by forming an unconditional basis for each En. For example, we show 

that  if sup,, dim En < c~ and X has Gordon-Lewis local unconditional 

s t ructure  then X has an unconditional basis of this type. We also give an 

example of a non-Hilbertian space X with the property that  whenever Y 

is a closed subspace of X with a UFDD (En) such that  supn dim En < 

oo then Y has an unconditional basis, showing that  a recent result of 

Komorowski and Tomczak-Jacgermann cannot be improved. 

1. I n t r o d u c t i o n  

Let X be a separable Banach space with an unconditional finite-dimensional 

Schauder decomposition (UFDD) (E,~). It  is well-known that  even if for some 

constant K each E,~ has a K-unconditional basis it is still possible that  X may 

fail to have an unconditional basis. The first example of this phenomenon was 

given in [10] where a twisted sum of two Hilbert spaces Z2 is constructed in such 

a way that  it has a UFDD into a two-dimensional spaces (or a 2-UFDD) En but 

Z2 has no unconditional basis. Later, Johnson, Lindenstrauss and Schechtman 
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[6] showed that  this same example fails even to have local unconditional structure 

(1.u.st.). 

Recently, Komorowski and Tomczak-Jaegermann [13] proved the remarkable 

result that  if X has an unconditional basis and is not hereditarily Hilbertian then 

it has a subspace Y with a 2-UFDD and failing local unconditional structure. 

This is an important  step in the resolution of the conjecture that  a Banach space 

all of whose subspaces have local unconditional structure must be Hilbertian. 

Motivated by these results, we investigate here the construction of uncondi- 

tional bases or unconditional basic sequences in spaces with a UFDD. For con- 

venience let us refer to a UFDD (E,~) as u n i f o r m  if sup,, dim E,~ < cc and as an 

N-UFDD if dim E,~ -- N for all n. 

Suppose X has an unconditional basis and the property that  whenever (En) is a 
( r  . ~ d i m  E~ UFDD for X and, for each n, ~Jn, Ji=l is a basis of En with unconditional basis 

constant (ubc) bounded by some constant K, then (fni)n,i forms an unconditional 

basis of X. In Section 2 we prove that  this property characterizes the spaces gl, g2 

and co. A similar property for any UFDD of a closed subspace characterizes g2. 

Now suppose X is a Banach space with a uniform UFDD (E,~). Under these 

hypotheses we show that  (Gordon-Lewis) 1.u.st. is equivalent to the existence 

of an unconditional basis for X of the form (fni)n,i where each kanzIi=l ( f  .hdimE, is 

an unconditional basis for E,~. This provides us with a simple criterion to check 

whether a given space with a uniform UFDD has 1.u.st.: compare the earlier 

criteria used by Ketonen [11], Borzyszkowski [3] and Komorowski [12]. Using 

this criterion we establish a general result on the failure of l.u.st, in twisted 

sums. 

Finally in Section 4, we give an example to complement the work of 

Komorowski and Tomczak-Jaegermann [13]. We show that  there is an Orlicz se- 

quence space gF ~ g2 with the property that  whenever (E~) is a uniform UFDD 

for a closed subspace X0 then one can choose an unconditional basis ( r  .~dim E, k J  n z / i ~ l  

of each En so that  the family (fn~)n,i is an unconditional basis of Xo. Of course 

the space gF is hereditarily Hilbertian; this example shows that  the result of [13] 

is in a sense best possible. 

2. Preliminary results 

Let us say that  a UFDD (E,~) is a b s o l u t e  if there is a constant C so that  

if y n , x n  E E,,  are finitely nonzero and satisfy IlY,,II -< IIx,~H for all n then 



Vol. 95, 1996 UNCONDITIONAL BASES 351 

II ~n~176 Ynll <- CII ~--~'~,,~176 1 x,,ll. We r emark  tha t  in [2] it is shown tha t  every F D D  of 

a reflexive subspace of a space with a shrinking UFDD,  for which every blocking 

is absolute,  can be blocked to be a UFDD.  In [1] there is a more  technical result  

which extends  this and also gives some condit ions under  which one can cons t ruc t  

an uncondit ional  basis for the subspace.  The  following Propos i t ion  is trivial: 

PROPOSITION 2.1: Suppose (E,~) is an absolute UFDD of  a Banach space X 

r t  ~dimE. is an unconditional basis o f  E,~ so that sup,, ubc (f~i) < oo. and that ~J,,iJi=~ 

Then (f~i)~,i is an unconditional basis o f  X .  

PROPOSITION 2.2: Let (En) be a UFDD of a Banach space X such that there 
/ ~dim E .  is an unconditional basis tg,i )i=l for each E~ with supn ubc " xdim E= (gni)i=l < r 

�9 �9 �9 dim of  E~ in Suppose further that whenever we pick an unconditional basis (f,~i)i=l E. 
{ f  .~dim E~ such a way that sup~ ubc w~,J i=l  < oo, then ( f~i ) , , i  forms an unconditional 

basis of X.  Then (E~) is an absolute UFDD. 

Proo~ Suppose (E,~) is not  an absolute  UFDD.  Then  by a gliding h u m p  argu- 

ment  we can find two normal ized sequences (x~)n=x, (Yn)~=l so tha t  x,~, y~ E F~ 

and so t ha t  it is not t rue  t ha t  for some constant  C and any finitely nonzero 
Ot oo sequence of scalars ( ,~),~=1 we have 

el l  
n=l n--=l 

Let F~, = [x~,y~] so tha t  d im F,, <_ 2. Then  there is a project ion Pn: E,, --~ Fn 

with IIP,,[I < V~; let G,, be  the complemen ta ry  space�9 Then  if G,, is nontrivial ,  

since it has codimension in En of at  most  two, it is at  least 9- isomorphic to 
l d i m G  ( f  ~dim F,, gniJi=l " (see Zippin [20]). Hence if we select any uncondit ional  basis w,~i Ji=l 

(~e .~dim F,~ of each F,~ with s u p u b c  ~J,,,Ji=l < oo we can ex tend  it to an uncondi t ional  

basis of E,,. I t  then  follows tha t  (f,i), , , i  is an uncondi t ional  basic sequence�9 

Since each Fn has dimension a t  most  two, we can introduce a Eucl idean n o r m  

[[ HF. SO tha t  I[z[I _< HXHF. <_ v/2[[x[I for x e F,~. Let  ( , ) r .  be  the associated 

inner-product .  We will show tha t  if ~,,, r/,~ e Fn with  []~,,][F. = ]l~,,]]f~ = 1 then  

there is a cons tant  C so tha t  for any finitely nonzero sequence (an)  we have 

oo oo 

(1) I[ < el l  
n = l  n = l  

It plainly suffices to consider the case where (~., 7],~)F. is real and non-negative. 

Then H~,, + ~t-IIF, = b,, >_ V~.  Let r = b~-l(~,~ + ~]n). Then we can extend ((,~) 
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to an orthonormal basis of Fn and by the above remarks there is a constant C1 
o o  so that  if (a,~),~= 1 is finitely nonzero then 

n = l  n = l  

By a similar argument, there is a constant C2 so that 

II ~n(~, Cn)F~(r ~)F~II  --< C211 ~--~ ~n~nll" 
n = l  n = l  

Now (~,~, ffn)F.((n,r/,~)F. _> 1 and this establishes the desired inequality (1), 

which clearly leads to a contradiction if we set ~n = x~/Ilx~IIF~ and 0n = 

Yn/IIY~IIF~. m 

We shall say that an unconditional basis (e,,)~~176 for a Banach space X has 

the shi f t  p r o p e r t y  (SP) if whenever (x , )  is a normalized block basic sequence 

there is a constant C so that  for any finitely nonzero sequence (a,~) we have 

o o  o o  

(2) c-111 ~ ~n~nll _ II ~ ~-~+~tl < VII ~--~ ~X~ll- 
n = l  n-----1 n = l  

It is easy to see that if X has (SP) then there is a uniform constant C so that  

(2) holds for all normalized block basic sequences. We also remark that,  although 

our formulation is mildly different, essentially the same concept was introduced 

for sequence spaces in [9]. Precisely, the unconditional basis (en) has (SP) if 

and only if the corresponding sequence space has both the left-shift (LSP) and 

right-shift (RSP) properties. No example of a sequence space with just one shift 

property, say (LSP), and not the other is known. 

PROPOSITION 2.3: The following properties are equivalent: 

(1) (e~)n~ 1 has property (SP). 

(2) For every blocking En = [ei]~-:~_~ +1 of (e~) and every unconditional basis 

(fk)k . . . .  a+l of E~ such that sup n ubc (fk)k . . . .  ~+1 < oo the sequence 

k ( f ) k = l  forms an unconditional basis of X.  

(3) For every blocking En of (en) and every sequence (Fn) of 2-dimensional 

spaces so that Fn C E,~ and every unconditional basis (fzn-l,f2,~) of Fn 

with supn ubc (f2n-1, f2n) < OO the sequence (f,,)~=l is an unconditional 

basic sequence. 
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Proof: Clearly (1) implies easily that every blocking (E,)  is an absolute UFDD, 

and so implies (2) by Proposition 2.1. (2) also implies by Proposition 2.2 that 

every blocking is absolute and so also implies (3) by Proposition 2.1. 

Finally suppose we have (3). Suppose (x,)  is a normalized block basic se- 

quence. It follows from Proposition 2.2 and (3) that the UFDD F~ = [x2~-1, x2,~] 

is absolute. Hence, for a suitable constant Co, and for any finitely nonzero 

sequence (an) we have: 
o o  ~ o o  

Co'It ~ o~2,,-,x2,,11 _< II ~ ~,,-,x~,,-,l l < Coil ~ o,~,,-,x~,,ll. 
n = l  n = l  n----1 

In a similar fashion, considering G~ = [X2n, X2n+l] we have a constant C1 so that: 

c~-111 o,2,,x~,,+lll _< II y']o~,,x~,,ll _< Clll Y]o,~,,x~,,+lll. 
n = l  n = l  n = l  

Combining this with the fact that (x~) is an unconditional basic sequence shows 

that (e~) has the shift property (SP). II 

THEOREM 2.4: Let X be a Banach space with an unconditional basis. Then the 

following are equivalent: 

(1) X is isomorphic to one of  the spaces gl,e2 or Co. 
{ f  ~dim E~ (2) Whenever (E~) is a UFDD for X and kJni l i=l  is an unconditional basis 

for each E~ with sup~ ubc (~ .~dim E~ ~J"~Ji=l < O0 then (f,,i),,,~ is an unconditional 

basis for X .  

Proof: (1) => (2). This is obtained by putting together some folklore results. It 

follows easily from the parallelogram law that if (E~) is a UFDD for e2 then there 
OQ is a constant C so that if (x,)~=~ is a finitely nonzero sequence with x,, E E~ 

then 

c-'(~-~] IIx,,ll~) ~/~ < II ~-] x,,ll < c(~-] I1:~,,11~) '/2. 
n = l  n = l  n = l  

If (En) is a UFDD for i l  one obtains the similar inequality 

c -~ IIz, l l <_ l l~ ,x ,  l l<_C~l lx , , l l ,  
n = l  n = l  n~-I  

from the classical argument of Lindenstrauss-Petczyfiski [14] that the uncondi- 

tional basis of/1 is unique. In the case of co one obtains 

C -1 m a x  IIz,,ll < II ~-~'~x,,ll < c m a x  IIz,,ll. 
l<n<:oo - -  - -  l<n<or 

n : l  
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In all cases the U F D D  is absolute  and Proposi t ion 2.1 gives the conclusion. 

(2) => (1). I t  follows from Proposi t ion  2.3 t ha t  every p e r m u t a t i o n  of every 

uncondi t ional  basis has the shift property.  Thus  any uncondit ional  basis (e,~) is 

a symmet r i c  basis with the (SP) and so by Proposi t ion  2.3 of [9] X is isomorphic 

to one of the spaces ~p for 1 <_ p < ec or to Co. Since every uncondit ional  basis 

is symmet r i c  this shows tha t  X is isomorphic to one of the three spaces el, e2 or 

co (ef [181). m 

COROLLARY 2.5: Let X be a Banach space with an unconditional basis. Then 

the following are equivalent: 

(1) X is isomorphic to t2. 
( r  .~dirn E~ (2) Whenever (En) is a UFDD for a closed subspace Y o[ X and ~J,~,Ji=l 

is an unconditional basis for each E,~ with sup~ ubc I ~ .'1 dim E~ k j n , ] i = l  < o0 then 

(fni)n,i is an unconditional basis for Y.  

(3) Whenever (E,~) is a 2-UFDD for a closed subspace Y of X and (fni)~=l,2 

is an unconditional basis [or each E,~ with sup,~ ubc (f,~i)i=l,2 < oc then 

( f~i ) , , i  is an unconditional basis for Y .  

Proo['. Clearly (1) implies (2) and (2) implies (3). For (3) ~ (1) we use Proposi-  

t ion 2.3 to deduce tha t  every uncondit ional  basic sequence has the sh i f t -proper ty  

and hence ms in Theo rem 2.4, X is isomorphic to gl, g2 or co. Since this p rope r ty  

passes to every closed subspace we obta in  X isomorphic to g2. | 

Our  final result of the section is tha t  if one can choose an uncondit ional  basis 

f rom a uniform U F D D  then it is essentially unique. 

PROPOSITION 2.6: Suppose X is a Banach space with a uniform UFDD (E. ) .  
/ xdim E~ Suppose ~r .~dim E~ and tg,*~h=l are normalized unconditional bases for each kJnz / i= l  

En, so that the whole collections ( f , i ) ,  (gnl) are unconditional bases of X .  Then- 

(f,~) and (g,~i) are permutatively equivalent. 

Proof: Let  dn = d im En. Let g,~i = ~ d : l a ~ ' j s  I t  is easy to see tha t  

infn ]det (a~'~)[ > 0 and so for some c > 0 and each n, there is a pe rmu ta t i on  

an of { 1 , 2 , . . .  ,dn} so tha t  [ai,o~(0 [ :> c. 

Now by Krivine 's  theorem,  for any finitely nonzero (an/)  

I I E ( E  2 o21j2 
n, j  i n,i  



Vol. 95, 1996 U N C O N D I T I O N A L  BASES 355 

where C is a suitable constant. Therefore, 

n , i  n , i  

Thus the basis (g~i) dominates the basis (fn,o,(i)). By the same argument, 

there exist permutations r,~ of {1, 2 , . . .  ,d~} so that (f~i) dominates (g~,~,(i)). 

Thus f~i dominates f~,,~(i), where ~ = a~rn. Iterating N! times where N = 
N~ sup d, ,  since 7r n is always the identity permutation, this implies that (f~i) and 

(fn,~(i)) are actually equivalent and so (f~i) and (g~o~(i)) are equivalent. | 

3. Spaces with local u n c o n d i t i o n a l  s t r u c t u r e  a n d  a U F D D  

Let Y be a space with an unconditional basis (en). We shall say that a sequence 

of finite-dimensional subspaces (En) forms a complemented block U F D D  if 

there is an increasing sequence of integers (p,~)n~__0 with P0 = 0 so that E,~ C 

Fn = [ej]j=pn_l+lP" and a projection P on Y so that P(Fn) = E~. If further 

sup dimFn < oo then (E, 0 is a u n i f o r m  c o m p l e m e n t e d  b lock  U F D D .  

LEMMA 3.1: I f  ( En) is a uniform complemented block UFDD then one can choose 
b i / * ~dlm En an unconditional as s [Jnj ) j=l in each E,~ so that (fnj )n,j is an unconditional 

basis for the closed linear span X = ~,~=1 E,~. Farthermore ( fnj)  is equivalent 

in a suitable order to a subsequence of (en). 

Proof: We shall prove the first statement by induction on M = supn dimEn; it 

is clearly true if M = 1. Assume the statement true whenever sup,~ dim E,~ < M 

and suppose sut)n dim E,~ -- M. We first show that it is possible to pick normalized 

vectors fax E En so that there is a projection Q: X ~ [f,~l] with Q(E~) c En, 

for each n. To see this note that for each n we have 

P~ 

(Pen, e*) = dim En 
k = p ~  _ 1 + 1 

and so there exists P,~-I < kn _< pn so that an = (Pek~,e*k.) > N -1 where 

N = sup(pn -P ,~ - I ) .  Let f~l = Pek, and consider the projection Q: Y -+ Y 

defined by Qy = ~~176 a~ 1 (y, e*k~)f~l. It is readily verified that Q is bounded. 

Let G~ = E,~ n Q-l{0}.  Then, after deleting trivial spaces, (G,~) is a uniform 

complemented block UFDD with sup,~ dim G,~ _< M -  1. We therefore can pick 
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an unconditional basis /r ~dimE, in each so that  (fnj)n,j is an unconditional ~anjl j=2 

basis of X. 

To complete the proof let H ,  = P - l { 0 }  n F~. Then (H,~) is also a uniform 

complemented block UFDD. I t  is therefore possible to extend (r �9 ~dim E,~ ~,Jn2 ]j=l  t o  an 

unconditional b a s i s / r  ~dimf~ of (F,~) in such a way that  (f,~j),,j is an uncon- kgnJ l j = l  

ditional basis of Y. The final s tatement follows from Proposition 2.6. | 

LEMMA 3.2: Let X be a finite-dimensional Banach space. Suppose X = 

E1 @ E2 @.. .  E,~ with associated projections Qj: X ~ Ej satisfying 

II ~'-" ~ jQj l l  = K.  s u p  

I~jl<x j=l  

Suppose Y is a finite-dimensional Banach lattice and that A: X ~ Y and B: Y 

X are operators so that  BA = Ix .  Then there is a finite-dimensional Banach 

lattice Z with a band decomposition Z = Z1 �9 Z2 �9 . . .  | Z,, and operators 

Ao: X -~ Z, Bo: Z --* Z with BoAo = Ix ,  Ao(Ej) C Zj, Bo(Zj) C Ej and 

[[Ao[[[[B0[[ _< 2K2[[A[[2[[B[[ 2. 

Proo~ Consider Z = y n  with the lattice seminorm 

I[(Y'," ,Y-)HZ sup Z([y j] ,  B*~*A" *" .. = r162 Y ). 
Ilu* I1<_1 j=l  

(Strictly speaking Z should be replaced by its Hausdorff quotient.) We define 

A0: X -* Z by Aox = (AQlx , . . .  , AQ,x)  and B0: Z --~ X by Bo(y l , . . .  , y , )  = 
n B )-'~j=l QJ YJ" Clearly B0, Ao satisfy all the required properties except possibly 

the norm estimates. 

If x e X and y* �9 Y* with [ly*[I < 1 then 

n n n 

~-~([AQjx[, [B*Q;A* y*[) <_ ( ( ~  [AQix[2) '/2, ( y~  [B*Q;A* y*[2)I/2). 
j----1 j----I j = l  

Now, by Khintchine's inequality, 

B 

[ [ ( Z  [AQjxl2)I/21i < 2`/2 Ave [{ Z e j A Q j x I [  < 21/2K[[AI[HxlI. 
- -  t j  ='4-1 

j = l  j - -1  

Similarly, 
n 

[[(Z [B*Q; A* y *[2)'/2[I <- 2'/2K[[AI[[IB][" 
j=l  



Vol. 95, 1996 UNCONDITIONAL BASES 357 

It follows that llAoll _< 2K211AII211B[I. 
On the other hand if x* E X* with llx*ll <_ 1 and if (Yl,Y2,---,Yn) = z C Z 

then 

l(Boz, x*)[ <_ ~ I<Yj, B*Qix*)[ 
j=l 

m 

<_ Z ( l y j l ,  ]B 'Q;A 'B* x*]) 
j----1 

< IIBIIIIzll. 

Hence IIA01]lIBo[I < 2g211Atl211BII 2. 1 

We now recall that a Banach space X has Gordon-Lewis local unconditional 

structure (or 1.u.st.) [5] if there is a constant C so that whenever E is a finite- 

dimensional subspace of X there is a finite-dimensional Banach lattice Y and 

operators A: E --+ Y, B: Y ~ X with IIAII]IBII _< C and B A  = IE. (A stronger 

form of local unconditional structure is considered in [4].) 

The following Proposition is established by Johnson, Lindenstrauss and 

Schechtman [6], under the additional assumptions that  X has nontrivial cotype 

and is complemented in its bidual. 

PROPOSITION 3.3: Let X be a Banach space with a UFDD (E,) .  Suppose 

X has local unconditional structure. Then there a Banach space Y with an 

unconditional basis ( e,~ ) so that Y contains X and (E,~) is a complemented block 

UFDD. 

Proof." We let Qn be the natural projection of X onto En and set K = 

sup,, IiQnll. Let Xn = ~ '=1  Ej. Using 1.u.st. and the preceding Lemma, there is 

a constant C so that  for each n we can find a finite-dimensional Banach lattice Zn 

with a band decomposition Zn = Znl 

B~: Z,` ~ X~ so that B~A,, = Ix~, 

B~(Z,~j) C Ej for 1 < j  < n .  

Choose e,, > 0 to be a sequence 

@ --. (9 Z~n and operators A,`: X,~ --+ Zn, 

[[A,`[I < 1, [[B,`[[ _< C and An(Ej)  C Z,`j, 

such that ~-'~e, < (2C) -1. Then by an 

argument of Johnson [17] we can find for each n and each 1 < j < n a sublattice 

Ynj of Znj with dimY,`j _< dj (independent of n) and a map L~j: An(Ej)  --+ Ynj 

so that IILnjz - zll _< ~j]lzll. 

Now let Y,~ = Y,,1 @ " "  (9 Yn,~ and define ,4,: X,~ ~ Y by Anx = 

~j=ILnjA.Qjx. Then 11,4,, - A,`II <_ Ej__I• j ,  SO that  H.4,`II < g .  Further 
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1 Since A,~(Ej) C Ynj and Bn(Ynj) C Ej the operator I l B , . 4 n -  I x ,  ll <_ ~. 
D,~ = (BnAn) -1 leaves each Ej invariant. Let/~,~ -- D,~B,~; then II/},~11 _< 2C. 

The conclusion from these calculations, after relabelling, is that  there is a 

constant C ~ so that  for each n there is a Banach lattice Zn with a band decom- 

position Znl �9 " "  �9 Znn such that  d imZnj  _< dj and operators An: Xn --* Zn, 

Bn: Zn ~ Xn so that  B,~A,~ = Ix~, [[An[[ _< 1, [[Bn[[ _< C ~ and An(Ej)  c Z,~j, 

B~(Z~j) C Ej for 1 <_ j <_ n. 
n Let p,~ = ~-~j=l dj. We can alternatively regard Z~ as the space of sequences 

(~j) so that  ~j = 0 for j > p~, with an associated norm. We can further 

suppose that  the canonical basis vectors P~ (ej)j= 1 are normalized and that  Z~j = 
PJ 

[ek]k=pj_l+l" 

Let /4  be a nonprincipal ultrafilter on the natural  numbers N. Define a norm 

[[ [[z on the space Coo of all finitely nonzero sequences by []~[Iz -- lirau []~[]z,. Let 

Z be the completion of coo for this norm. 

Let Xo be the linear span of all (En) in X. We can define an operator A: Xo --* 

Coo by Ax = limu Anx and similarly B: Coo -~ Xo by Bx = limu B,~.  I t  is clear 

that  [JAIl _< 1 and [[B[] _< C'.  It  is easy to verify that  A isomorphically embeds 

X into Z in such a way that  A(En) is a complemented block UFDD. | 

Remark: In [6] it is further claimed in Remark 2 that  (under their additional 

hypotheses) if (En) is a uniform UFDD then we can choose Y so that  (En) is a 

uniform complemented block UFDD. This of course would imply by Lemma 3.1 

that  one could find an unconditional basis for X by picking a basis of each E~. 

However, no proof of Remark 2 is given and the natural  proof does not appear  

to work. We shall see, however, that  the claim of Remark 2 in [6] is nonetheless 

correct, but the proof is rather circuitous. 

Let us now fix H as a complex N-dimensional Hilbert space, where N > 2. If 

A C s  we denote its trace by tr A and its spectral radius by r(A). We say that  

a subalgebra A of s  is t r i a n g u l a r  if every A E A is of the form A = AI + S 

where S is nilpotent. This is equivalent to requiring tha t  r ( A -  ~-(tr A)I)  = 0 for 

all A E ,4. The following elementary lemma is very well-known and we include 

its proof only for reference. 

LEMMA 3.4: If  A is a triangular subalgebra of s  then there is an ortho- 

normal basis (ei)N=l so that  every A E ,4 with tr A = 0 is upper triangular, i.e. 

(ej, Aek) = 0 whenever j <_ k. 
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Proo~ The subset A o =  { A E A : t r A = 0 }  = { A c A : d e t  A = 0} is an ideal 

of A. It suffices to construct  an increasing sequence of subspaces (Ek)o<_k<_N with 

d i m E k  = k so tha t  Ao(Ek) c Ak-1 for 1 <_ k <_ N. Then  we can construct  an 

or thonormal  basis (ek)N=l with ek E E g - k + l  for 1 _< k < N. Suppose then 

Eo = {0} to start  the induction. Now suppose 1 < k < N and E k - l  has been 

constructed.  Choose x ~ Ek-1  to minimize the dimension of ( A o x + E k - 1 ) / E k _ l .  

If  this dimension is zero then AoX C Ek-1 and we let E~ = [x, Ek-1].  Otherwise 

there exists S E A0 so that  Sx  ~ Ek-1. But then .AoSx + Ek-1 contains S x  by 

minimality. Hence there exists T E Ao with Sx  - T S x  E Ek-1. However ( I  - T)  

is invertible in ,4 and Ek-1 is A-invariant  so tha t  Sx  ~ E~_~ and we have a 

contradiction.  | 

Now suppose tha t  C is a compact  subset of s  which contains the identi ty 

I = IH. Let IICH = sup{llAIl: A e C} _> 1. We define for m e N the set C (m) to 

be the set of all operators  T E s  of the form 

j l = l  j 2 = l  j m = l  

where A1, A2 . . . .  , Am E C and laj, ..... j.~[ _< 2 m. Since I E C the sets C ('~) are 

increasing compact  sets and U,~ c(m) is the algebra generated by C. If  T C C (m) 

then [ITH < (2m[ICII) m. 

LEMMA 3.5: Suppose 5 > 0, M ~ 1, m, N E N with N > 2. Then there exists 

p E N so that p = p(M,  N, m, 6) has the following property: suppose C satis//es 

the above conditions with ]ICII ~_ M. Suppose S E C (m) and r(S  - -~(tr  S)I )  = 

6 > O. Then there exists a projection P with 0 < rank P < N and P E C (p). 

Proof: Let ()~j)N=l be the (complex) eigenvalues of S repeated according to 

algebraic multiplicity. We have maxj,k I)~j - Akl >_ 5. It  follows tha t  we can 

reorder them so that  for some s with 1 < s < N - 1 we have I)~j - )~I 7- 6 /2N 

k S whenever 1 _~ j < s and s +  1 _~ k _< N. Let T = 1-[/=1( - AjI).  For each 

j we have IAjl _< ( 2 m M )  m and on mult iplying out one has T E C (q) where 
$ 

q depends only on m , N  and M. Let ttk = [ I j = l ( ~ k  - ,~j) so tha t  #k = 0 if 

1<__ k <_ s a n d 2 N ( 2 m M )  m~v >_ [#kl >__ (6/ (2N))  N i f s + l  _< k <_ N. Next let 
N 

W = I-[~.=s+l(T-#kI).  Let 3, = I-[k=s+l(-Pk). It  is easily seen tha t  P = -~ - IW 

is a project ion and tha t  0 < rank P < N. From the obvious upper  bound  on 
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7 -1,  we obta in  immedia te ly  tha t  P 6 C (p) where p depends only on m, N, M, s 

II 

The  next  es t imate  is crude and can doubtless be  improved.  

LEMMA 3.6: Suppose H is a complex N-dimensional Hilbert space and that .4 

is a triangular subalgebra of s  Let  (Ak) be a sequence in s  with each 

Ak non-invertible such that Ek~176 A k converges unconditionaIly to I = IH. Let 

OO 

sup I1 E a~cAkll = M. 
I~1<1 /r 

Then 
O0 

sup d(~a~,`4) > 2-3N2(N!)-NM I-N~. 

d oo Proof'. Let  b = suP l~ l<  1 ( ~ k = l a k A k , ` 4 ) .  First  observe tha t  since `4 is 

t r iangular  we can choose an or thonormal  basis (ej)N=l so tha t ,  when represented 

as matr ices ,  each B 6 ,4 is of the form B = AI + S where S has an upper  

t r iangular  mat r ix ,  i.e. S = (sij) where sij = 0 if i < j. 

Next,  note  tha t  there exists B 6 . 4  so tha t  I I I  - B I I  ___ b. If B = AI + S then  

tr  B = NA and so [A - 11 < b. Then  111 - all <__ (b -t- 7-), where 7- = IAI. Clearly 

IlSll ___ 1 + b + 7- < 4 M .  N o w  expand (S + ( I  - S))N; since S N = 0 we obta in  

1 <_ 2N(b + " r ) ( 4 M )  N - 1  = 2 3 N - 2 ( b  + 7-)M N-1.  

We now es t imate  7-. Let  A,~ , N : {aij}i, j=l.  T h e n  

N 

1 E la,'~l N i t r  A, [  _< 
i-----1 

N 

< (l-I  1~7,1) '/N + max la,'~ - a J S I  
- -  i>j 

i=1 
N 

< (1-I I a~ l ) I /N + ~--~. la,'} - aj"~l. 
i=1 i> ]  

Notice tha t  for fixed i , j  we have ET----1 lai~ -- aj~[ < 2b. Hence on s u m m i n g  we 

have 
c~ N 

-< Z l}- I  a~,l ' ~  + N~b. 
n = l  i=1 
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It follows that 

b + r <_ 4(N!)MI-I lNb 1/N 

and the lemma follows. I I  

LEMMA 3.7: Suppose 2 < N E N and M > 1. Then there is an integer p = 

p(N, M) with the following property: suppose H is a complex N-dimensional 

Hilbert space and let (Ak) be a sequence in L:(H) with each Ak non-invertible 

such that ~k~=l Ak converges unconditionally to I = IH. Let C be the collection 

of all operators of the form }--~k~__l akAk where lak] _< 1 and suppose ][Cl] -< M. 

Then there is a projection P with 0 < rank P < N and P E C (p). 

Proo~ We argue by contradiction. Suppose for some M, N the result is false. 

A Then we can find a sequence of such expansions I = Y~k=l nk so that the 

= 0 we have that 

N N 

II _< E II la :o(01 
i=l aEIl' i=l 

where H' is the collection of all permutations other than the identity of 

{1,2 , . . .  ,N}.  Hence 

N cx~ N 

Z ( H  la:~l) ''N ~ ~ E ( H  la~",<,(01) '/N 
n=l i=l aEH' n=l i = l  

Let us fix a E H'. Then 

oo N N c~ 

~ ( H  leT,<,(01) 1/" < H ( Z  on ,,,N - -  ~ i , a ( i )  .s �9 

n----i i = l  i = 1  n = l  

Now if i < a(i) then 

n = l  

so that since a is not the identity, we obtain an upper estimate 

N 

E ( f l  ~nt, i , a ( i )  ,'IlN < M I - 1 / N b l / N .  

n = l  i = 1  

Summing over all such permutations and combined with our previous estimates 

we finally obtain: 

r <_ N2b + (N!)MI-I /Nb 1IN. 
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associated compact sets C,, = {~--~=l akA,k: [(~kl --< 1} satisfy [[C,~[[ _< M and 

that  there is no nontrivial projection in C(~ "). By passing to a subsequence we can 

further suppose that  C, converges in the Hausdorff metric to a compact set C. It 

then follows from Lemma 3.5 that  for each p we must have 

lim sup r ( S - tr S ) , ~ o ~  (p) - - ~ - I  = 0. 
SEC~ 

Since all these quantities are continuous it follows that  if S E C (p) for any p, we 

have 

and so the algebra ,A generated by C is triangular. But the preceding Lemma 3.6 

now implies that  

inf sup d( A, A) > 0 
n A E C .  

which contradicts the fact that  C. converges in the Hausdorff metric to C c A. 

| 

THEOREM 3.8: Let X be a r e a ]  or complex Banach space with local uncondi- 

tional structure. Suppose that X has a uniform UFDD (En). Then there is an 
{r  ~dim E~ unconditional basis kjnjl j=l  Of each E ,  so that (fnj)~j is an unconditional 

basis for X.  

Proof: We first prove the complex case. We shall prove the formally weaker 

s ta tement  that if X has 1.u.st. and an N-UFDD (En) then there is a bounded 

projection Q on X so that  Q(E~) c E ,  for each n and 0 < d imQ(En)  < 

N for each N. Once this is proved the result follows simply by induction on 

sup,~ dim E , .  

We first note that  it is possible by Proposition 3.3 to regard (E,~) as a 

complemented block UFDD in a Banach space Y with unconditional basis (e,~). 

r e lr~ where ro < rl  < " "  �9 Let P: Y ---, X be the We suppose that  En C t klk . . . .  1+1 

associated projection. Let H be an N-dimensional Hilbert space and suppose for 

each n, V,~: H --* E,~ is an isomorphism satisfying [IVn[[[[V~-I[[ <_ yrN. 

Letting (e~) be the biorthogonal functions for the basis, we define for rn-1 + 1 <_ 

k < r,~, A,k: H ---* H by Ank = vnlp(e~ | ek)Vn. Let 
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Then note that SUpn llCnll < cc and so there is an integer p such that each C(~ p) 

contains a projection Rn, with 0 < rank R, < N. 

Next observe that if (B~)~EN is any sequence in s with Bn C C~ then the 

operator B defined on X by Bx -- VnB,~VjIx for x E E, is bounded. It follows 

easily that the same statement is true if B, E C (q) for fixed q. Hence the operator 

Q: X ~ X defined by Qx = V,~RnVn I for x E En is bounded and the proof is 

complete in the complex case. 

We now turn to the real case. Let Q~: X --* E,~ be the natural projections. 

We complexify X to a space )(, by norming (x + iy) for x, y E X by 

C~ 

Ilx + i y L =  sup II  -  (QkxcosO  + QkysinOk)ll. 
0_<0~_<2~r k=l 

Now the subspaces E,~ = En + iEn form a U F D D  for X and so we can pick an 

uncondit ional  basis (,~ .~dim E~ in each E,~ so tha t  (~Snj)n,j is an uncondit ional  ~wn3 ]j----I 
basis of X.  Next  let Y be the underlying real space for X = X �9 X. Then  Y 

has an uncondi t ional  basis ( ~ n j , i ~ n j ) n , j .  NOW the original ( E , )  is a uniform 

complemented  block U F D D  in Y with this basis and so we complete  the proof  

by applying L e m m a  3.1. II 

Let us give a sample  appl icat ion of this result.  Let  w be the space of all 

sequences. Suppose X is a super-reflexive (Kbthe)  sequence space (so tha t  the 

canonical  basis vectors (e~) form a 1-unconditional basis of X )  and let ~:  X --+ w 

be a (homogeneous)  centralizer,  i.e. a m a p  satisfying, for a suitable constant  A" 

(1) gl(ax) = a~(x )  for a C R and x E X.  

(2) I[fl(ux) - u~(x) l lx  <_ Allul[o~]]x[[x for z �9 X and u �9 g~.  

See [7] and [8] for discussion and examples.  The  simplest  examples  are those 

discussed in [10] of maps  

~ ( x ) ( n )  = x ( n ) f  {'1% Ix(n)l~ 
\ i lxlb ] 

where f :  R --+ R, is a Lipschitz function (here we interpret  the r ight -hand side as 

0 if x(n)  = 0). In  the case f ( t )  = t and X = g2 one recovers the space Z2 studied 

in [10] and  [6]. 

We can now form the twisted sum Y = X ~Ba X of all pairs  (x, y) in w x w 

such tha t  

II( ,y)lb = II llx + lly- ( )llx < 
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This is a quasinorm, but is equivalent to a norm, since the space X is super- 

reflexive (as in [10 D. The space Y is then a reflexive Banach space with a 2- 

UFDD (En) where E,~ is the span of (e~, 0) and (0, e~). The vectors (0, e,~) span 

a closed subspace Xo of Y isomorphic to X and the quotient space Y / X o  is also 

isomorphic to X. It may be shown that Xo is complemented in Y, so that Y 

splits as a direct sum X ~ X, if and only if there is a linear centralizer L: X ~ 

(i.e. n x  = bx for some b E w) so that  IILx - ~txl[x <_ Cl lx l lx  for all x E X. 

Such twisted sums arise very naturally as derivatives of complex interpolation 

scales of sequence spaces. If Z0, Z1 are two super-reflexive sequence spaces and 

Ze = [Z0, Z1]e for 0 < 0 < 1 is the usual interpolation space by the Calder6n 

method, one can define a derivative dXe  which is a twisted sum Xe ~ a  X8 which 

splits if and only if Z1 = wZo for some weight sequence w = (w(n) )  where 

w(n)  > 0 for all n. These remarks follow easily from the methods of [7]. 

Our main conclusion here is that twisted sums of this type have 1.u.st. if and 

only if they split as a direct sum. This extends the special case of Z2 given in [6]. 

THEOREM 3.9: Suppose X is a super-reflexive sequence space and ~: X -~ w is 

a centralizer on X .  Let  Y = X ~ X .  Then the following are equivalent: 

(1) Y is isomorphic to X @ X .  

(2) Y has local unconditional structure.  

(3) Y has an unconditional basis. 

(4) The  subspace Xo  is complemented  in Y .  

(5) There exists  b E w and C > 0 so that  [ [~(x)-bx[[x <_ C[[x[]x for all x E X .  

Proof." We have already observed the equivalence of (4) and (5). Clearly (4) =~ 

(1) =~ (3) =v (2). It remains only to show that (2) => (4). 

Let us first remark that  we can assume that  the canonical basis (en) of X is 

normalized; we can also assume that X is p-convex and q-concave with constant 

1 1 = 1. We note that  Y is super-reflexive and has one, for suitable p > 1 and ~ + 

a 2-UFDD (E,~) with the property that for suitable x,~ E En the unconditional 

basic sequence (x,~) is equivalent to the canonical basis of the sequence space X 

and the induced unconditional basis (yn) of the quotient Y/[xn] is also equivalent 

to the canonical basis of X. 

If Y has 1.u.st. then by Theorem 3.8 we can pick a normalized basis of E,,, 

say (J~, g~), so that  (f , , ,  g,~)~=l is an unconditional basis of Y. We may suppose 

that  x,, = a , J n  + b,,g,~ where la,[ >_ b~ _> 0. If we consider the dual basis (J*, g,~) 
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* bn]* - a,~g, must  be equivalent to the canonical  basis of then the sequence xn = * 

the dual sequence space X ' .  

It  will now be convenient to switch to sequence space language. Let W be a 

sequence space so tha t  if ( �9 W then  H(]lw is equivalent to I] ~-~=k~_-i ( (k)fkH,  and 

similarly let Z be a sequence space so tha t  H~llz is equivalent to II ~k~_-i ((k)gkH. 

Since Y is super-reflexive we can assume tha t  bo th  W and Z are p-convex and 

q-concave with  constant  one (possibly changing the original choice of p, q), and 

t ha t  the canonical bases are normalized in bo th  W and Z. 

It  is now easy to see tha t  for a suitable constant  C we have the inequalities 

cIlr <~ max(IKIIw, llbr ~< CIlr 

and 

• < max(llbCIIw. IICIIz') < CIICIJx- 

whenever (,  ~* �9 Coo. Note also tha t  b �9 s  We will show tha t  these inequalities 

imply tha t  W and Z bo th  coincide up to equivalence of norm with X and hence 

tha t  the basic sequences (f,~), (g,,) and (x,~) are all equivalent.  This  suffices to 

show tha t  [x,,] is indeed complemented  in 1I, i.e. Xo is complemented  in Y. 

Before proceeding we will need a lemma: 

LEMMA 3.10: Suppose V is a p-convex sequence space with 1 < p < oo, and 

that 0 < ~,~* �9 Coo with (( ,~*) = II~llv = IICllv- = 1. Suppose further that 

O < 71�9 coo with (Th ( . )  > l and [lTll[v = M. Then, i f  l 1 _ _ ~ + ~ = 1, (min(~, r/), ~*) _> 

q-I  M-q" 

Proof  of  Lemma:  Note tha t  if t > O, 

{max(~, to), ~*) _< (1 + MPtP) 1/p 

and so 

(min(~, try), ~*) > 1 + t - (1 + MPtP) 1/p. 

Now let t = M -q <_ 1; the l e m m a  follows by e lementary  es t imates .  | 

Proof  of  the Theorem: (2) implies (4): We observe first t ha t  if ~ �9 Coo then 

II~llw < CIl~llx < c~ll~llz. 
S u p p o s e  first tha t  M is chosen so large tha t  2qC4q+2 + M ( 1 -  ~ ) l / q  < M. Let  

> 0 be  chosen so t ha t  ~ < m i n ( C  -2 ,  ( M +  1 ) - i ) .  We split  N as A, II U A,I where 
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A4 = {n: b,~ < ~} and .~4' = {n: b,  > ;3}. First  suppose ~ E coo is suppor ted  on 

.h4'. Then  

ma~(ll~llw, II~[Iz) < c ~ - l l l ~ l l x  

and if ~* E coo(A4'), then 

m a x ( l l ~ * I l w - ,  [[~*tIz" ) <- C~-II[~*[[x ". 

These inequalities show tha t  on Co0(A4') the spaces X, W, Z coincide. 

Now let ~ .  be the supremum of tl~lIz subject to ~ ~ coo(M), II~llw = 1 and 

has support  of cardinali ty at most  n. Then  ~1 = 1 and ~n+l _< ~ .  + 1. We will 

show by induction tha t  ~ .  < M for all n. 

Suppose ten-1 <_ M and ir > M. Then  there exists ~ > 0 with suppor t  of 

exact ly n so tha t  ~ E coo(M),  II~llw = 1 and II~llz > M. Now II~llz _< M + 1 so 

tha t  [[b~[[z _< 13(g + 1) < 1. Hence we must have [l~[[x < C. Pick 0 _< ~* with 

the same support  so tha t  (~,~*) = 1 and ]]~*[[w- = 1. Then  [[~*[[x- _> C -1,  but  

][b~*][w. _< B < C -2,  so tha t  [[~*[[z- _> C -2. It follows tha t  we can pick 0 _< T/ 

again with the same support ,  so tha t  []7/][z _< C 2 and (~,~*} = 1. We then have 

[[~/l[w -< C4, and we can apply the lemma to see tha t  

(min(~, T/), ~*) _> q-xc-4q. 

Now let {(n) = ~(n) whenever ~(n) _< 2qC4%?(n) and {(n) = 0 otherwise. It 

follows easily tha t  ({,~*) _> �89 (so that  [[([[w >_ �89 and [[([]z _< 2qC4qI[~[[x <_ 
2qC4q +2 . 

Now 
II llz < tl llz +  --111  - r 

<_ 2qC 4q+2 + M(1 - I1r ' / "  

< 2qC 4q+2 + M(1  - 1 )  1/q 
- 2q 

< M .  

This contradict ion yields the result tha t  ~ ,  _< M for all n and hence the theorem. 

II 

Remark: The  most  natural  case of Theorem 3.9 is when X = e2 so tha t  Y is 

a "twisted Hilbert  space", i.e. Y has a Hilbert ian subspace X0 so tha t  Y / X o  is 

Hilbertian.  The  result suggests the conjecture tha t  every twisted Hilbert  space 

with an uncondit ional  basis is a Hilbert  space. 
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4. A n  e x a m p l e  

In this final section we construct an explicit example of a non-Hilbertian Orlicz 

sequence space where every closed subspace with a uniform UFDD has local 

unconditional structure. In [13] Komorowski and Tomczak-Jaegermann show 

that if a Banach space with an unconditional basis is not hereditarily Hilbertian 

then it has a closed subspace failing 1.u.st. but with a uniform UFDD. 

We define a function G on [0, oc) by G(0) = 0 and: 

0 < x < l ,  

x > l .  

a ' ( x )  = { 2---~'}(11 - -  logx), x> l .0  < x < 1, 

LEMMA 4.1: For any 1 < p < c~, whenever (an)n~176 is a sequence with 0 <_ an <_ 

1 and ( ~ = 1  aP) 1/p <- 1 then for any sequence (tn) with t,~ > 0 we have: 

OO OO OO 

E C(ant,~) <_ C ( E  antn) + p E t,~C(an). 
n = l  n = l  n : l  

Proof: It clearly suffices to prove the inequality for a finite sequence ( a l , . . .  , aN) 

of strictly positive numbers. 

Suppose A > p. Consider the function 

N N N 

O(t] . . . .  , tn) = E G(antn) - G ( E  antn) - A E t,~G(an), 
n = l  n = l  re=l 

defined on the positive cone {t: ti _> 0, 1 < i < N}. Note first that if antn >_ 1 
then G(ant~) 1/2,1/2 = an ~n <_ a,~t,~ <_ tnG(a,~). It follows quickly that  ep is bounded 

above by its maximum on the set {t: aiti <_ 1, 1 < i < N}.  

Let �9 attain its maximum at the point s where 0 < si _< a~ -1 for 1 < i < N. 
N 

Let S = ~ j = l  ajsj .  For any index j such that sj > 0 we have 

ajG'(a js j )  - a jG' (S)  - AG(aj) -- O. 

Since ajsj  _< 1 this simplifies to 

( 1  - logajs j )  - G'(S)  = A(1 - ~ logaj) 
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and hence to 

logajsj + 2Gr(S) = 1 - 2A + Alogaj .  

Assume that  the set J of indices such that  sj > 0 is nonempty. Then taking 

exponentials and summing 

A e2a'(s)S = e 1-2~' ~-~ aj. 
jeJ 

Now if S _> 1 then e2C'(s)S >_ S. If S < 1 then e2C'(s)s  = e. In either case we 

deduce that  

E a ~  ~_ e 2)'-1 > 1, 
jEJ 

and this contradicts the conditions on ( a l , . . .  ,an).  Now since J is empty the 

maximum is attained at the origin and is 0. Since ~ > p is arbi trary the lemma 

is proved. II 

Now let F be the Orlicz function defined by F(O) = 0 and 

S x 2 ( 1 - 1 ~  O < x < l ,  
F(x) 

x, x > l .  

The function F is convex for x < e -1/2 so that  F is equivalent at 0 to a convex 

function. We will consider the Orlicz sequence space eF. The norm defined in 

the usual way 
OO 

Ilxll~ = inf{t > 0: ~ F(x(~)lt) < 1} 
n = l  

is, strictly speaking, only a quasi-norm but is equivalent to a norm. Note that  

gF is reflexive and has cotype 2 and type p for any p < 2; these facts are easily 

computed from the function F. Clearly eF C 22 and Hxll2 < IlxlIr for all x e gF. 

We will also consider the modular A defined on gF by 
OO 

A(x) = ~ F(Ix(n)l ). 
n----1 

It  will be convenient to introduce for 0 < a < 1 the Orlicz functions Fa where 

Fa(0) = 0 and 
f x 2 ( 1 - a l o g x ) ,  O < x < l ,  

Fo(z) / x, x > l .  

If (a,~) is any sequence with 0 < a,, < 1 we will consider the Orlicz modular 

space (or Orlicz-Musielak space) g(F~,) of all sequences x(n) so that  

~-~n~176 F ~  (Ix(n)l) < oc again with the (quasi-)norm defined in the usual way. 
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LEMMA 4.2: / f  M > 1 there is a constant K = K(M)  with the following 
property. Whenever (x,~),~e~ and (Yn),~e~ are two (finite or infinite) 
M-unconditional basic sequences satisfying the conditions: 

sup max  ( ' IIx"IIF IlY-IIF ~ < M, 
,~e~ \ IlYnllf' IIx-IIF) - 

sup m a x  ( Nxnl[2 Ily,,lle'~ < M, 
, < ~  t, I ly, , l12' I l X n l l 2 )  -- 

then (Zn),,e~ and (Y,~)ne~t4 are K-equivalent. 

Proof We first note tha t  it will suffice to consider normalized bases. Suppose 

tha t  (xn) is a normalized block basic sequence. Let  an = IIx.ll~. Then  for any 

finitely nonzero ( tn) ,~c~ with max  It.I _< 1, we have: 
O 0  

A(~-~ t~xn)= ~ ~ F(ltnllx~(j)l) 
nEJ nE.Ad j = l  

= ~ '~--~(It. 12f(Izn(J)l) - Ix.(j)121t,,I 2 log It.I) 
nEAd j = l  

= ~ Itnl2(1--a"logltnl) �9 
nE34 

I t  follows easily tha t  (x,~) is 1-equivalent to the unit  vector  basis in the Orlicz 

modula r  space g( Fa. ). 

Now it is clear t ha t  if a < b < Ma then F~(x) <_ Fb(X) <_ MF~(x) and from 

this it follows easily, using the uniform A2-condit ions on Ft for 0 < t < 1, tha t  

there is constant  K = K(M)  so tha t  if an <_ b, <_ Man for n E A4 then  the unit  

vector  bases of  g(F~. ) and g(Fb. ) are K-equivalent .  

Now we turn  to the general case. First  note tha t  ~F is super-  

reflexive and so if X is any closed subspace and 2 < p < oo is fixed then  X* is of 

co type  p with some cotype constant  D independent  of X.  Now suppose (x~)nez4 

is a normalized M-uncondi t iona l  basic sequence in ~F whose closed linear span  is 

a subspace X .  Consider the co-ordinate  functional e~ as an element of X*.  Then  

IXn(j)t p= ~ ]e;(Xn)[ p <_ DPM p. 
nE.M nE.M 

Suppose ( t , ) n e M  is finitely nonzero, and m a x  [tnt _< 1. Since g f  has cotype  2, 

there is (cf. [16] Theo rem 1.d.6) a universal  constant  C so tha t  

C I i I (  ~ It.121x.12)l/2NF <-N E t'~x.NF <- CMN( ~ It.12ix.12)l/2N F" 
hEAd nE.M nEA4 
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Let us calculate the modular A(f)  where f = (~'~,~e~ Itnl2IxnI2) W2. Then 

OO 

h(f) = ~--] G( ~ Itnl21xn(j)12). 
j=l nE]Vl 

Since G is concave, it is subadditive and so: 

A(S) <_ ~ Z C(It~fix~(3)l ~) = ~ ro.(It~l). 
j=l nE.M hE.h,4 

For the reverse inequality consider 

A(M-1D-l f )  = ~ G( E ]t~i2w~(J)) 
j=l nEJt4 

where wn(j) = M-2D-2lx,~(j)12. Then (~-~,~e~ wn(J)P/2) 2/p < 1. Thus we can 

apply Lemma 4.1 to deduce that  for each j, 

E G(It'~12w'~(J)) < G( E It-12w,(J)) + p 
nE.M nE.M nE.,~ 

Summing over j ,  and using the fact that MD > 1, we obtain 

E Fa (M-1D-1itnl) < A(f)  + p . - ~ ~ It-I L 
nEgVf nEA4 

The fact that l F has cotype 2 implies an estimate 

( E ]tn12)x/2 < CMI] ~ tnxnlls. 
nE.M nEA4 

It follows easily that (x,,),,eM is K-equivalent to the unit vector basis o f / (F a .  ) 

where K depends only on M. This and the preceding remarks complete the proof. 

| 

The following theorem follows immediately: 

THEOREM 4.3: Every unconditional basic sequence in l F is equivalent to a se- 

quence of constant coefficient blocks in iF and hence spans a subspace isomorphic 

to a complemented subspace of iF. 

Let us note that this implies a strong universality principle for unconditional 

basic sequences in iF. Precisely, iF has an unconditional basis (obtained by 
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repeating every length constant coefficient block infinitely often) so that every 

normalized unconditional basic sequence is equivalent to a subsequence of the 

basis. Such a property is also enjoyed by Pelczyfski's universal space ([15], 

Theorem 2.d.10 or [19]). We next observe that  ~ f  obeys a strong form of the 

Schroeder-Bernstein property for spaces with unconditional bases. 

THEOREM 4.4: Let X be a Banach space with an unconditional basis, and 

suppose that X embeds into g~. and iF embeds into X .  Then X is isomorphic 

to gf .  

Proof" By the preceding theorem X is isomorphic to a complemented subspace of 

g t  spanned by constant coefficient blocks (u,)n~_l . We now observe that  (u~)~__l 

must contain an infinite number of blocks of the same length, for otherwise X 

is isomorphic to an Orlicz modular space gF~, where lim~__,~r an = 0 and this 

can easily be seen not to contain a copy of gF. Hence gF is complemented in X. 

By Proposition 3.a.5 of [15], gF is isomorphic to ~F ~) X and this is now trivially 

isomorphic to X. II 

In [13] it is shown that any non-hereditarily Hilbertian space with an uncondi- 

tional basis contains a closed subspace with a 2-UFDD which fails to have local 

unconditional structure. The following theorem (our main result of the section) 

shows that this result cannot be substantially improved. 

THEOREM 4.5: Let X be a closed subspace of  gF with a UFDD (Ek)k~__l such 

that the spaces (Ek) are uniformly Hilbertian (i.e. supd(Ek ,g~  ~) < ec, where 
N~ Nk = dim Ek.) Then one can choose an unconditional basis (fik)i=l Of Ek so that 

the collection (fik)i,k is an unconditional basis of X .  

Remark: In particular the theorem applies to any uniform-UFDD. 

Proof: Let tl IIEk be a Euclidean norm on Ek so that  liXlIF < IIxllEk < Cllxll F 
Nk where C -- supd(Ek, g2 ). Let M be the constant of unconditionality for the 

Schauder decomposition (Ek). We choose a basis ( f~)  for Ek which is orthonor- 

mal for both I[ ItEu and I1112. Suppose (tik) is finitely non zero and that  (elk) 

is a choice of signs. Let x~ = ~ -~a  tlkf~k and Yk = ~~iN--_kl eiktikfik. Then for 

the set A4 of all k such that they are nonzero we have [IXklIf/llykl]f < C and 

{[yklIf/l{xklIF <_ C. We also have IIzkll2 = Ilykll2. Both (Xk)ke• and (Yk)ke~ 

are M-unconditional basic sequences. Hence they are K-equivalent by Lemma 
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4.2 where K = K(C,  M).  In par t icular ,  

II VkllF <_ Kll x llF 
kEA4 kE..~A 

whence the basis (fik) is K-uncondi t ional .  I 

Remark: The  propert ies  of uncondit ional  basic sequences in iF  have other  

applications,  for example  to uniqueness questions. We plan to discuss these 

appl icat ions in a separa te  paper .  
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